A Class of Explicit Two - Step Runge - KuttaMethods with Enlarged Stability Regions
نویسنده
چکیده
In this paper we study a class of explicit pseudo two-step Runge-Kutta (EP-TRK) methods for rst-order ODEs for parallel computers. We investigate linear stability and derive methods with enlarged stability regions. In numerical experiments on a shared memory computer we compare a parallel variable step size EPTRK implementation with the eecient sequential Runge-Kutta method dopri5.
منابع مشابه
A class of explicit one-step methods of order two for stiff problems
In this paper we introduce a new class of explicit one-step methods of order 2 that can be used for solving stiff problems. This class constitutes a generalization of the two-stage explicit Runge-Kutta methods, with the property of having an A-stability region that varies during the integration in accordance with the accuracy requirements. Some numerical experiments on classical stiff problems ...
متن کاملA general class of explicit pseudo two - stepRKN methods on parallel computers
The aim of this paper is to investigate a general class of explicit pseudo two-step Runge-Kutta-Nystrr om methods (RKN methods) of arbitrarily high order for nonstii problems for systems of special second-order diierential equations y 00 (t) = f(y(t)). Order and stability considerations show that we can obtain for any given p, a stable pth-order explicit pseudo two-step RKN method requiring p ?...
متن کاملA Class Of Implicit-Explicit Two-Step Runge-Kutta Methods
This work develops implicit-explicit time integrators based on two-step Runge-Kutta methods. The class of schemes of interest is characterized by linear invariant preservation and high stage orders. Theoretical consistency and stability analyses are performed to reveal the properties of these methods. The new framework offers extreme flexibility in the construction of partitioned integrators, s...
متن کامل2-stage explicit total variation diminishing preserving Runge-Kutta methods
In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...
متن کاملAccelerated Runge-Kutta Methods
Standard Runge-Kutta methods are explicit, one-step, and generally constant step-size numerical integrators for the solution of initial value problems. Such integration schemes of orders 3, 4, and 5 require 3, 4, and 6 function evaluations per time step of integration, respectively. In this paper, we propose a set of simple, explicit, and constant step-size Accerelated-Runge-Kutta methods that ...
متن کامل